
InteractMove: Text-Controlled Human-Object Interaction
Generation in 3D Scenes with Movable Objects

Xinhao Cai
Wangxuan Institute of Computer
Technology, Peking University

Beijing, China
xinhao.cai@stu.pku.edu.cn

Minghang Zheng
Wangxuan Institute of Computer
Technology, Peking University

Beijing, China
minghang@pku.edu.cn

Xin Jin
Beijing Electronic Science and Technology Institute

Beijing , China
jinxinbesti@foxmail.com

Yang Liu∗
Wangxuan Institute of Computer Technology

State Key Laboratory of General Artificial Intelligence,
Peking University
Beijing, China

yangliu@pku.edu.cn

Abstract
In this paper, we propose a novel task of text-controlled human-
object interaction generation in 3D scenes with movable objects.
Existing human-scene interaction datasets suffer from insufficient
interaction categories and typically only consider interactions with
static objects (do not change object positions), and the collection of
such datasets with movable objects is difficult and costly. To address
this problem, we construct the InteractMove dataset for Movable
Human-Object Interaction in 3D Scenes by aligning existing human-
object interaction data with scene contexts, featuring three key
characteristics: 1) scenes containing multiple movable objects with
text-controlled interaction specifications (including same-category
distractors requiring spatial and 3D scene context understanding),
2) diverse object types and sizes with varied interaction patterns
(one-hand, two-hand, etc.), and 3) physically plausible object ma-
nipulation trajectories. With the introduction of various movable
objects, this task becomes more challenging, as the model needs to
identify objects to be interacted with accurately, learn to interact
with objects of different sizes and categories, and avoid collisions
between movable objects and the scene. To tackle such challenges,
we propose a novel pipeline solution. We first use 3D visual ground-
ing models to identify the interaction object. Then, we propose a
hand-object joint affordance learning to predict contact regions for
different hand joints and object parts, enabling accurate grasping
and manipulation of diverse objects. Finally, we optimize interac-
tions with local-scene modeling and collision avoidance constraints,
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ensuring physically plausible motions and avoiding collisions be-
tween objects and the scene. Comprehensive experiments demon-
strate our method’s superiority in generating physically plausible,
text-compliant interactions compared to existing approaches. The
code is available at https://github.com/Cxhcmhhh/InteractMove.
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1 Introduction
The generation of human motions within scenes is a growing re-
search area with significant applications in VR, AR, video games,
and beyond. Recently, there has been increasing interest in generat-
ing human motions conditioned on natural language descriptions.
However, most prior works either focus on language-driven interac-
tions between humans and isolated objects [5, 7, 18], neglecting the
influence of the surrounding scene, or study human-scene interac-
tions [13, 25] without explicitly considering movable objects. This
results in limited expressiveness and practicality when deployed in
real-world scenarios, where objects are often embedded in complex
environments and exhibit various affordances. To bridge this gap,
we propose a novel task: text-controlled human-object interaction
generation in 3D scenes with movable objects.

In existing Human-Scene Interaction datasets [4, 9, 13, 19, 25], in-
teractions are quite limited, and interactable objects are often fixed
and immovable, such as beds and sofas. Furthermore, manually
collecting a new large-scale, high-quality 3D dataset is both diffi-
cult and costly. Therefore, we introduce the InteractMove dataset
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Figure 1: Samples in our dataset. We synthesize a large-scale
human-object-interaction-in-scene dataset by aligning cap-
tured human-object interaction sequences with various 3D
scan scenes. In the dataset, we provide free-form text anno-
tations and interaction with movable objects in high-quality
scenes.

constructed by aligning existing human-object interaction data
with richly annotated 3D scene contexts as shown in Fig. 1. Our
dataset exhibits three key properties: (1) scenes contain multiple
movable objects, enabling text-controlled interaction with specified
targets, often in the presence of same-category distractors that ne-
cessitate spatial understanding; (2) the dataset covers diverse object
types and sizes, with interactions that vary in complexity, including
one-handed and two-handed actions; and (3) object manipulation
trajectories are physically plausible, avoiding collisions.

This new task also introduces the following challenges to be
addressed. First, it requires models to comprehend natural language
instructions and identify the correct object among multiple, often
similar, distractors in the scene. For example, in the scene shown in
Fig. 1, there are two binoculars, and the model needs to identify the
one described in the text that is on the desk near the bed. Second, the
target objects may vary significantly in type and scale, exhibiting
various affordances and requiring different interaction strategies.
For example, lifting small objects like a cup may only require one
hand to interact with, while larger objects like a table need both
hands. Even for the same type of object, interaction strategies may
differ depending on its specific shape, e.g., a cup with a handle is
usually grasped by the handle, whereas a handleless cup is more
naturally grasped by its body. Third, the task involves dynamically
manipulating objects within 3D scenes while ensuring physical
plausibility, which includes avoiding penetrations or collisions with
other scene elements, especially moving large objects over long
distances with other crowded objects nearby.

To address the above challenges, we propose a novel Affordance-
Guided Collision-Aware Interaction Generation (AGCA) frame-
work with carefully designed components that model 3D object
grounding, fine-grained hand-object joint affordance learning, and
collision-aware motion generation. Specifically, we first employ
state-of-the-art 3D visual grounding models to locate the intended
object specified by the input text. To capture the diversity of object
affordances and interaction strategies, we introduced a hand-object
joint affordance learning module, which takes the object mesh as

input and predicts the likelihood of interactions occurring between
hand joints and object surfaces over time, referred to as hand-object
affordance. This fine-grained affordance is used to guide the interac-
tionmotion generation, enablingmore accurate interactions aligned
with object size and interaction semantics. Finally, we incorporate
a collision-aware motion generation strategy that voxelizes the
region around the interactive object to evaluate spatial accessibil-
ity, combined with a collision-aware loss that enforces physically
plausible motion and prevents interpenetration, while ensuring the
object’s trajectory remains synchronized with human control and
scene constraints.

In summary, our contributions are threefold: (1) We introduce
a new task that focuses on text-conditioned human-object inter-
action generation in movable-object 3D scenes. (2) We construct a
comprehensive dataset for this task with text-controlled interaction
and diverse movable objects; we also propose a novel framework
for this task with carefully designed components that model 3D ob-
ject grounding, fine-grained hand-object joint affordance learning,
and collision-aware motion generation. (3) Extensive experiments
demonstrate the effectiveness of our approach in producing realis-
tic, text-aligned, and physically plausible interaction motions in 3D
scene with movable objects.

2 Related Works
2.1 Human-Object Interaction
Datasets capturing human-object interaction(HOI) are crucial for
training generative models, yet remain difficult and costly to collect.
Datasets like GRAB [22], BEHAVE [3], and CHAIRS [12] employed
optical MoCap/IMU systems to capture detailed human-object inter-
actions, including object trajectories. However, these interactions
are typically performed in isolation without the presence of a full
scene, thus lacking contextual constraints from the environment.

Early works in this region begin with HOI detection[14, 15] or
HOI image generation[27]. For human-object interaction gener-
ation, early methods like OMOMO [16] rely on object trajecto-
ries as input, limiting their applicability in free-form generation
tasks. InterDiff [26] introduces object dynamics but focuses on mo-
tion prediction conditioned on past human motions. More recent
works [7, 18, 21] attempt to generate interactions with isolated
movable objects without the presence of a full scene. Several recent
methods also incorporate affordance prediction or contact map
to inform interaction generation [5, 24]. However, they generally
model affordance as a coarse spatial heatmap over object surfaces,
neglecting the affordance of hands. They neglect to explicitly model
how different hand joints engage with object surfaces, which is
important when differentiating between single-handed and two-
handed interactions or fine-grained grasp strategies. In contrast,
we propose hand-object joint affordance learning, which models
fine-grained contact likelihoods between hand joints and object sur-
faces over time. This enables more accurate and diverse interaction
generation aligned with object shape, size, and semantics.

2.2 Human-Scene Interaction
Earlier works begin with scene understanding[28]. Some recent
efforts explore large-scale human-scene interaction (HSI). For in-
stance, HUMANISE [25] synthesizes high-quality HSI data within
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Figure 2: Method of our motion alignment.

virtual environments. Nonetheless, it supports only a limited range
of immovable objects and predefined interaction types. TRUMANS[13]
is the dataset that is closest to us, as it also includes both scenes
and dynamic objects. However, TRUMANS is limited in several
key aspects: (1) the set of movable object categories is narrow (20
types), restricting interaction diversity; (2) actions are predefined
into 10 coarse categories, lacking diverse interaction types; and (3)
it only provide discrete action labels, lacking natural language an-
notations, thus unable to support language-guided HOI generation.
In contrast, our proposed dataset, InteractMove, extends beyond
existing efforts by synthesizing realistic HOI data into richly anno-
tated 3D scenes from ScanNet [6], while enabling object movement
and fine-grained textual control. It features 71 categories of mov-
able objects embedded in 3D scenes, with interactions spanning 21
types and paired with natural language descriptions. This allows
scene-aware and language-controllable interaction generation with
dynamic objects, enabling more realistic and physically plausible
interactions in complex environments.

Human-scene interaction generation uses conditional Varia-
tional Auto-Encoder (cVAE)[20] or diffusion models[10] to generate
human-scene interaction based on action labels or text conditions.
Earlier works [17, 30, 31] mainly focus on predicting static human
poses conditioned on the scene geometry, often for single frames.
Later approaches [2, 8, 11] extended this to temporal sequences, en-
abling more realistic interactions. However, these methods typically
rely on action labels or scene cues, without leveraging natural lan-
guage instructions. HUMANISE [25] proposes text-guided motion
generation within static scenes. Yet, it does not handle dynamic ob-
ject manipulation, as all interactable items are fixed. This severely
limits interaction diversity and realism. With the introduction of
various movable objects, this task becomes more challenging, as
the model needs to accurately identify interactive objects, learn to
interact with objects of different sizes and categories, and avoid colli-
sions between objects and the scene. Our work addresses these chal-
lenges by introducing a text-controlled generation framework that
incorporates 3D object grounding, fine-grained hand-object joint af-
fordance learning, and collision-aware motion generation, enabling
precise, diverse, and realistic interactions in complex scenes.

3 InteractMove Dataset
To enable text-controlled human-object interaction generation in
3D scenes with movable objects, we construct InteractMove, a novel
dataset that enriches existing human-object interaction (HOI) data
with realistic, richly annotated 3D scene contexts. Instead of collect-
ing new data from scratch, which is costly and time-consuming, we
automatically align existing motion sequences from BEHAVE [3]
and GRAB [22] datasets with 3D scenes to achieve a scalable yet
high-quality solution. Our construction process emphasizes the fol-
lowing key principles: (1)Movable target objects: Diverse objects
are placed in semantically appropriate areas of the scene, including
multiple distractors of the same category, to facilitate spatial under-
standing. (2) Physically Coherent Motion Alignment: Human
motion sequences are adjusted to achieve realistic interactions with
objects at different positions. (3) Scene-aware Filtering for Phys-
ical Plausibility: The aligned motion-scene pairs are filtered to
remove cases violating physical constraints, such as foot-ground
detachment, boundary overflow, or human-object collisions.

3.1 Object Placement in 3D Scenes
We first collect object and human-object interaction data from ex-
isting HOI datasets BEHAVE [3] and GRAB [22], totaling 71 object
categories and 21 interaction types. Taking the interaction of take
picture with camera as an example, we will discuss the placement
process here. To integrate them into realistic 3D environments, we
utilize the ScanNet [6] dataset to obtain 3D scene and utilize the
Sr3D dataset [1] to obtain object-region annotations and relative
spatial relations annotations in ScanNet. For each target interac-
tion, we identify appropriate placement surfaces in the 3D scene.
For instance, a camera might be located on the surface of a table.
Sr3D[1] provides annotations for such regions and their relative
spatial positions like a table next to a door. We sample these surfaces
within the scene where objects can be placed and ensure that their
relative positions are annotated by Sr3D[1]. Then, based on the
interaction label provided by the HOI dataset type and location
annotations provided by Sr3D[1], we can automatically generate
the full interaction textual annotations from templates: A person
takes pictures with the camera on a table next to a door. For each
scene, we also put multiple instances of the same category as the
target object on every reasonable surface. For example, if there
are 𝑘 placeable surfaces in the scene, we will randomly select a
subset and put cameras on these surfaces when aligning an interac-
tion of A person takes pictures with the camera. This requires the
model to learn language-conditioned object disambiguation, such
as identifying The camera on a table next to a door.

3.2 Motion Alignment
One of the core challenges in aligning HOI data with new scene
placements is the mismatch between the original object height and
its new scene-constrained height (e.g., an object being on a shelf
or table). As shown in Fig. 2, to ensure the interaction remains
realistic, we adjust the corresponding human motion, particularly
hand and arm movements, to match the new object location. We
apply a motion inpainting strategy based on a pre-trained motion
diffusion model [23], focusing on editing the relevant hand joint
trajectories during the phase when the hand comes into contact
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Figure 3: Visualizations of our dataset.

Dataset Scenes Movable Objects Movable Object
Categories

Annotated
Interaction Types Frames Nature Language

Annotations

PiGraph[19] 30 × - - 0.1M ×
PROX-Q[9] 12 × - - 0.1M ×
GTA-IM[4] 49 × - - 1.0M ×
CIRCLE[2] 9 × - - 4.3M ×

HUMANISE[25] 643 × - 4 1.2M ✓
TRUMANS[13] 100 ✓ 20 10 1.6M ×

Ours 618 ✓ 71 21 2.2M ✓

Table 1: Comparisons of our dataset with other Human-Scene Interaction datasets.

with the object. Specifically, suppose the initial height of the object
is ℎ𝑖 , and the adjusted height is ℎ𝑎 (the height of the surface we
plan to put the object on). We first identify the moment when the
human hand initiates interaction with the object, characterized by
two features: the object begins to exhibit motion, and the absolute
position of the human hand is proximal to the object. Then, to align
the motion with the scene, we first shift the human hand joints to
the target height ℎ𝑎 as shown in Fig. 2: for the hand joint positions
within the𝑇 frames before and after the interaction start frame, we
forcibly adjust the height based on the formula:𝑀𝑡 = (ℎ𝑎 −ℎ𝑖 ) × 𝑡

𝑇
.

This ensures a smooth transition, with the height aligning with
the new height when contacting the object. However, this forced
adjustment can make the motion sequence unnatural. Then, we
repair the motion using a pretrained diffusion model as shown in

Fig. 2: we apply forward diffusion for 𝑡 steps to introduce noise, and
then leverage a pretrained motion diffusion model [23] to perform
reverse denoising, progressively restoring realistic and coherent
human motions. This design maximizes the preservation of the
majority of the interaction process, with only the approaching phase
being modified, thus retaining the valuable original interaction data.

3.3 Physics-based Filtering and Validation
After alignment, we apply strict filtering to ensure all motion-scene
combinations are physically plausible and scene-aware. Our filter-
ing criteria include: (1) Foot-ground contact: Ensures the human
maintains realistic contact with the ground; sequences with abnor-
mal foot elevation or penetration are discarded. (2) Scene boundary
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constraints: Motion sequences that move the human outside the vis-
ible scene space are rejected by monitoring the root joint trajectory.
(3) Collision detection: We compute distances between the human
mesh and nearby objects or walls, removing samples with signifi-
cant interpenetration. This filtering pipeline guarantees that each
retained sequence is compatible with the geometry and physics
of the scene, making the dataset suitable for training models on
physically realistic 3D human-object interactions.

3.4 Quantitative Statistics and Visualizations
Our InteractMove dataset contains 30.5k interaction sequences
across 618 richly annotated indoor 3D scenes, encompassing 71 dif-
ferent types of movable objects, such as cameras, apples, and mugs.
Compared with existing Human-Scene Interaction (HSI) datasets,
InteractMove exhibits three unique advantages, as visually illus-
trated in Fig. 3: (1)Diverse object types and interaction complexity: As
shown in Fig. 3 (a), InteractMove supports a wide range of object cat-
egories with diverse object size and interaction strategies (e.g. using
one hand or two hands). This significantly enriches the interaction
patterns and poses new challenges for motion generation models
to adapt to object size, shape, and affordances. (2) Multiple movable
objects per scene: As shown in Fig. 3 (b), our scenes contain multiple
interactable objects of the same category, placed in semantically
reasonable locations. This setup introduces same-category distrac-
tors, requiring models to perform fine-grained spatial reasoning
and accurate object grounding based on text. (3) Physically plausi-
ble interaction: As shown in Fig. 3 (c), our dataset includes data of
humans manipulating objects with large-range movement. Thanks
to our scene-aware motion adjustment and filtering pipeline, all
motions in our dataset are collision-free and physically reasonable.

As shown in Tab. 1, our dataset outperforms existing human-
scene interaction datasets in terms of the number of scenes, scale
of interaction frames, and variety of movable objects. Unlike prior
datasets that often involve static furniture (e.g., beds or sofas), our
InteractMove enables text-guided human-object interactions in 3D
scenes with movable objects, along with semantic natural language
descriptions. Also, the statistics in Tab. 7 also prove the quality of
our synthesized data.

4 Method
4.1 Overview
Our method addresses the task of text-conditioned human-object
interaction generation in 3D scenes with moveable objects, produc-
ing human motion sequences 𝑋 and object trajectories 𝑌 based on
text 𝑇 and 3D scene information 𝑆 including a set of object point
clouds 𝑂 ∈ R𝑁×3 for 𝑁 points of𝑀 objects in the scene.

Compared to conventional Human-Scene or Human-Object In-
teraction generation tasks, our setting introduces unique challenges:
the model must (1) identify the target object from free-form lan-
guage in a 3D scene, (2) adapt the interaction to diverse object
geometries and task descriptions, and (3) ensure the generated ob-
ject trajectory is physically plausible and avoids collisions with
the surrounding scene. To tackle these challenges, we propose a
novel Affordance-Guided Collision-Aware Interaction Generation
(AGCA) framework as shown in Fig. 4 (a). We begin with 3D object
grounding using a pretrained grounding module [29] with the text

condition 𝑇 to identify its point cloud 𝑂 ′ for the next stage. Next,
we perform hand-object affordance learning uses an affordance dif-
fusion module (more details are provided in Sec. 4.4), which takes
the object point cloud and text instruction as inputs and generates
a fine-grained hand-object joint affordance 𝐴 ∈ R𝑁× 𝐽 ×𝐿 , for 𝑁
points of the object, 𝐽 points of the hand, and 𝐿 frames, to guide
plausible hand-object contact by considering the object shape and
size. This affordance represents the likelihood of interactions oc-
curring between hand joints and object surfaces over time and is
used to guide the interaction motion generation, enabling more
accurate interactions aligned with object size and interaction se-
mantics. Finally, we incorporate a collision-aware motion generation
that voxelizes the region around the interactive object to evalu-
ate spatial accessibility, as the local scene information around the
object to be interacted with is more critical for preventing the ob-
ject from collision through the scene. We also combined with a
collision-aware loss that enforces physically plausible motion and
prevents interpenetration. Conditioned on the text, local scene,
and learned affordance, our model generates physically plausible
motion sequences that align with both interaction semantics and
environmental constraints.

4.2 Preliminary: Diffusion Models
We utilize the Denoising Diffusion Probabilistic Model (DDPM) [10]
to generate both hand-object affordance and motion sequences
under conditioning. Given a ground truth signal 𝐴0, the forward
diffusion process adds Gaussian noise step-by-step:

𝑞(𝐴𝑡 |𝐴𝑡−1) = N(𝐴𝑡 ;
√︁

1 − 𝛽𝑡𝐴𝑡−1, 𝛽𝑡 𝐼 ), (1)

where 𝛽𝑡 is a noise schedule. The closed-form expression for 𝐴𝑡 is:

𝐴𝑡 =
√
𝛼𝑡𝐴0 +

√
1 − 𝛼𝑡𝜖, 𝜖 ∼ N(0, 𝐼 ), (2)

with 𝛼𝑡 =
∏𝑡

𝑠=1 (1 − 𝛽𝑠 ). The reverse process is parameterized by
a neural network𝐺𝜃 which estimates 𝐴0 conditioned on input 𝐴𝑡

and context 𝑐:
𝐴0 = 𝐺𝜃 (𝐴𝑡 , 𝑐). (3)

The model is trained to minimize the mean squared error:

L𝑑𝑖 𝑓 𝑓 = E𝐴0,𝑡



𝐴0 −𝐴0


2

2 . (4)

4.3 3D Object Grounding
To determine which object the human should interact with, we first
use a 3D visual grounding model (e.g., ZSVG3D [29]) to locate the
object referenced in the input text𝑇 . The output is a selected target
object point cloud 𝑂 ′ ∈ R𝑁×3. Although we use ZSVG3D [29],
our pipeline is agnostic to the specific grounding module and can
flexibly incorporate future grounding advancements.

4.4 Hand-Object Affordance Learning
Objects in 3D environments vary greatly in their shapes, sizes, and
potential interaction strategies. For example, interacting with a
small cup may only require one hand, while lifting a heavy box
might necessitate both hands, and the hand joints and object parts
involved in object interaction also differ. To handle this diversity,
our second stage, as shown in Fig. 4(b), takes the object point
cloud as inputs and models the fine-grained spatial relationship
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Figure 5: Our Collision-Aware Loss.

between human hands and object surfaces, providing interaction-
aware guidance based on the hand-object joint affordances.

Given the object point cloud and text conditions, the model
generates the hand-object joint interaction affordance. We calculate
the distance between each point of the object and each joint of the
human at each frame to get the distance map 𝑑 ∈ R𝑁× 𝐽 ×𝐹 , where
𝑁 is the number of points in the object, 𝐽 is the number of human
joints, and 𝐹 is the number of frames. Then we normalize it as
𝐶𝑖 𝑗𝑛 = exp

(
− 1

2
𝑑𝑖 𝑗𝑛

𝜎2

)
to assign a higher value to closer point-joint

pairs, indicating their high relations. To differentiate interaction
types involving single-hand control or bi-hand control, we compute
individual affordance scores for each hand and establish a threshold
𝜏 to determine hand engagement status. Subsequent normalization
based on 𝜏 ensures temporal continuity in the resultant affordance
signals: 𝐴𝑖 𝑗𝑛 = 1𝐶𝑖 𝑗𝑛>𝜏 · 𝐶𝑖 𝑗𝑛−𝜏

1−𝜏 . 𝐴𝑖 𝑗𝑛 then indicates whether the
𝑗−th hand joint is involved in the interaction with the 𝑖−th point
of the object in the 𝑛−th frame or not (if 𝐴𝑖 𝑗𝑛 = 0).

To denoise the affordance using a diffusion model, we extract
object features from the point cloud using PointNet[32] and fuse
them with the noisy affordance via cross-attention. The fused fea-
tures, along with timestep and text embeddings, form the input to
a Transformer decoder, which predicts the final hand-object joint
interaction affordance for the subsequent interaction generation
stage. Same as Eq(4), we use the diffusion loss to supervise the
model training.

4.5 Collision-Aware Motion Generation
Generating physically plausible interactions requires respecting
the constraints imposed by the surrounding 3D scene. Thus, we
design a collision-aware motion synthesis module guided by local
scene modeling and a collision-aware loss. As the local scene infor-
mation around the object to be interacted with is more critical for
preventing the object from collision through the scene, we propose
a local scene understanding model that voxelizes the region around
the interactive object to evaluate spatial accessibility, providing
local scene information for the model. We also combined with a
collision-aware loss that enforces physically plausible motion and
prevents interpenetration.

Local Scene Modeling. We voxelize the 3D scene into occu-
pancy grids S′ ∈ N𝑁𝑥×𝑁𝑦×𝑁𝑧 , indicating whether each voxel is
occupied. Around the target object, we extract a region and divide it
into patches on the x-y plane. The feature for each patch is derived
by pooling occupancy values along the z-axis. These 2D patch fea-
tures are then encoded using a Vision Transformer (ViT) to obtain
local scene feature tokens 𝑓𝑙𝑜𝑐𝑎𝑙 that inform motion synthesis.

Collision-aware Loss. The unique challenge of our proposed
task is the complexity of the entities involved, especially the dy-
namics of objects should be consistent with the scene and human
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Method Goal
Distance↓

Multi-
modality↑

Physical
Realism↑

Non-collision
Score↑

MDM[23] 0.904 1.33 0.474 84.97
HUMANISE[25] 0.847 1.17 0.659 95.21

GOAL[21] 0.820 1.25 0.708 96.63

Ours 0.791 1.58 0.813 98.36

Table 2: Quantitative evaluations on our dataset.

motions. Therefore, we introduce a collision-aware loss function
composed of two components as shown in Fig. 5: contact loss Lcont
and penetration lossLpene. The contact loss encouragesmeaningful
contact between hand joints and object surfaces, while the penetra-
tion loss penalizes any interpenetration between human body parts,
the object, and the scene geometry. Together, these terms enforce
physical plausibility and consistency in the generated interactions.
The contact loss L𝑐𝑜𝑛𝑡 is formed as:

L𝑐𝑜𝑛𝑡 = | |𝑑 ( 𝑗, 𝑝obj) | |
2, (5)

where 𝑗 indicates human joints within a distance threshold from
the target object and 𝑝obj indicates the object points closest to these
human joints. The penetration loss L𝑝𝑒𝑛𝑒 is formed as:

L𝑝𝑒𝑛𝑒 = | |𝑑 (𝑣, 𝑝
′

obj) | |
2, (6)

where 𝑣 indicates human vertices that penetrate the object surface,
and 𝑝

′

obj indicates the object points closest to these human vertices.
Considering the necessity of keeping object movement aligned

with the scene, we introduce a test-time-penetration constraint.
During the denoise process, we recover the human and object point
cloud based on the denoise results on step 𝑡 , and move it along the
negative-gradient direction of the test-time penetration loss L𝑡𝑡𝑝 .
We first filter the vertex set where penetration occurs:

P = {(𝑖, 𝑗) | − nT
𝑗 · (V

𝑖
𝑔𝑒𝑛 − V𝑗

𝑠𝑐𝑒𝑛𝑒 ) > 0}, (7)

where V𝑖𝑔𝑒𝑛 is the vertex set of the recovered mesh, V𝑖𝑔𝑒𝑛 is the
nearest scene vertex set, and nT

𝑗
is the local normal vector. Then

we calculate the test-time penetration loss:

L𝑡𝑡𝑝 =
∑︁

(𝑖, 𝑗 ) ∈P
| |V𝑖 − V𝑗 | |2 . (8)

Interaction Denoising. We use a diffusion module to generate
the interactions. We apply positional encoding to the noisy interac-
tion to obtain interaction features 𝐹𝑖𝑛𝑡 . The interaction affordance
and the object features are concatenated and fed into the fully con-
nected layers to obtain the 𝐹𝑜𝑏 𝑗 . All condition tokens, including
𝐹𝑖𝑛𝑡 , 𝐹𝑜𝑏 𝑗 , and the local scene feature 𝐹𝑙𝑜𝑐𝑎𝑙 , are concatenated and
passed through a transformer encoder to produce the denoised
output 𝑌 . The model is trained with a total loss:

L𝑡𝑜𝑡𝑎𝑙 = L𝑑𝑖 𝑓 𝑓 + 𝜆1L𝑐𝑜𝑛𝑡 + 𝜆2L𝑝𝑒𝑛𝑒 (9)

where L𝑑𝑖 𝑓 𝑓 is the diffusion reconstruction loss same as Eq(4),
L𝑐𝑜𝑛𝑡 and L𝑝𝑒𝑛𝑒 are collision-aware losses, and 𝜆1, 𝜆2 are hyper-
parameters. L𝑡𝑡𝑝 is only applied for inference, inhibiting the pene-
tration after every step of the denoising.

Method Multi-
modality↑

Physical
Realism↑

Non-collision
Score↑

TRUMANS[13] 1.29 0.707 98.73

Ours 1.33 0.754 99.03
Table 3: Quantitative evaluations on the TRUMANS dataset.
For fairness, we conduct the comparison only on samples
involving interactions with movable objects.

Grounding
Module

Hand-Object
Affordance

Local-Scene
Modeling

Goal
Dist.↓

Multi-
modality↑

Physical
Realism↑

Non-
collision↑

× × ✓ 1.545 1.73 0.464 90.18
✓ × × 0.895 1.69 0.524 78.36
✓ × ✓ 0.793 1.47 0.570 95.21
✓ ✓ × 0.803 1.87 0.752 80.24
✓ ✓ ✓ 0.791 1.58 0.813 98.36

Table 4: Ablations of each component in our method.

L𝑐𝑜𝑛𝑡 L𝑝𝑒𝑛𝑒 L𝑡𝑡𝑝
Goal
Dist.↓

Multi-
modality↑

Physical
Realism↑

Non-
collision↑

× × × 0.803 1.87 0.752 80.24
× × ✓ 0.793 1.55 0.754 96.15
× ✓ × 0.796 1.72 0.775 90.02
✓ × × 0.798 1.76 0.788 87.15
✓ ✓ × 0.796 1.66 0.808 95.44
✓ ✓ ✓ 0.791 1.58 0.813 98.36

Table 5: Ablations of the collision-aware loss.

Number of
Instances

Goal
Dist.↓

Multi-
modality↑

Physical
Realism↑

Non-collision
Score↑

Unique 0.405 1.47 0.819 98.77
Multiple 0.793 1.60 0.805 98.21

Table 6: Experiments on the number of instances of the same
category as the target object.

5 Experiments
5.1 Evaluation Metrics
We adopt the following metrics to evaluate interaction quality: 1)
Goal Distance (Goal Dist). Measures how well the human interacts
with the target object, computed as the average minimum distance
between the human body and object surfaces over time. Lower is
better. 2) Multimodality. Assesses the diversity of actions generated
from the same prompt and scene. Defined as the averageL2 distance
between multiple generated motions. Higher is better. 3) Physical
Realism. Evaluates whether the motion appears physically plausible,
using a pre-trained model to score each frame as realistic (1) or not
(0). The final score is the average over all frames. Higher is better.
4) Non-collision Score.Measures the proportion of frames without
collisions or penetrations. Higher is better.
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Motions FID↓ Diversity↑ Physical
Realism↑

Original Motion 0 0.8629 0.8327
Forced Alignment 0.670 0.8531 0.8186
Refined Motion 0.133 0.8459 0.8213

Table 7: Ablation of our dataset construction.We evaluate the
quality of the original HOI motion and our aligned motion
(aligned with the 3D scene).

Figure 6: Visualization. The prompt is The person drinks the
bowl on the desk near the sofa.

5.2 Quantitative Results
We present the quantitative results in our InteractMove dataset in
Tab.2. We can observe that: 1) Goal Distance: Our method achieves
the best Goal Distance performance, demonstrating its ability to
generate accurate interactions with the correct target object. 2)
Physical Realism: The results show our advantages in the physical
plausibility of interactions, which we attribute to the joint modeling
of hand-object affordance. 3) Non-collision Score: Our method yields
fewer collisions with the scene, confirming the effectiveness of
our collision-aware motion generation design. 4) Multimodality:
Our approach achieves significantly higher diversity compared to
previous methods, while still satisfying other constraints, indicating
strong capability in generating diverse yet plausible interactions.

We further evaluate our method on the TRUMANS dataset [13]
in Tab. 3. Unlike our dataset, TRUMANS includes only 20 interactive
objects and 10 predefined interaction types, with discrete action la-
bels instead of free-form language descriptions. While our method
is designed for text-controlled interaction motion generation, it is
also compatible with label-based inputs. To fit our task, we conduct
the comparison only on samples involving interactions with mov-
able objects. Since the TRUMANS dataset provides the target object
location, we omit the Goal Distance metric. As shown in Tab. 3, us-
ing our evaluation metrics, our method still achieves higher scores
in Physical Realism, Non-collision, and Multi-modality, validating
the effectiveness of our affordance-based motion generation even
on limited-action datasets.

5.3 Ablation Studies
We conduct ablation studies to evaluate both our method and
dataset construction.

Ablations on Pipeline Components. Tab.4 shows results after
disabling key modules in our pipeline: 1) Without the grounding
module, the model struggles to locate target objects and interaction

regions, leading to a sharp drop in Goal Distance. 2) Removing
the hand-object joint affordance module significantly reduces in-
teraction realism. This is because the hand-object joint affordance
provides fine-grained spatiotemporal guidance for interactions and
offers unique conditions for different types of objects. 3) Without
local scene modeling, predicted motions often collide with the en-
vironment, showing that scene constraints are crucial for spatial
consistency. These experiments demonstrate the effectiveness of
the proposed modules.

Ablations on Collision-aware Loss. Tab.5 compares three
collision-aware losses. The inclusion of both L𝑐𝑜𝑛𝑡 and L𝑝𝑒𝑛𝑒 as
training-phase supervisory terms moderately reduced the Goal
Distance, indicating their effectiveness in optimizing spatial posi-
tioning during human-object interactions. ConstraintL𝑐𝑜𝑛𝑡 demon-
strated greater efficacy in enhancing Physical Realism, while con-
straint L𝑝𝑒𝑛𝑒 more substantially improved the Non-collision Score,
confirming their respective functional priorities: interaction assur-
ance and collision prevention. As an inference-phase constraint,
L𝑡𝑡𝑝 achieved the most significant reduction in intersection arti-
facts through remarkable Non-collision Score improvement. All con-
straints exhibited measurable reductions in Multimodality, which
we consider an essential trade-off between stringent safety require-
ments and behavioral diversity preservation.

Distractor Impact. Our dataset contains multiple interactable
objects of the same category, requiring models to perform fine-
grained spatial reasoning and accurate object grounding based on
text. We study the impact of the number of same-category distrac-
tors within the scene on the model’s final performance. The results
are in Tab.6. The task is much harder when multiple distractors
exist in the scene, demonstrating that our proposed dataset and
task are non-trivial.

Dataset Construction. We evaluate motion quality to assess
the effectiveness of our motion alignment techniques, as shown
in Tab.7. Original Motion denotes unmodified HOI motions from
GRAB and BEHAVE; Forced Alignment refers to forcing aligning
these motions to the scene without refinement; Refined Motion
is our proposed motion alignment method. Results show that Re-
fined Motion significantly improves motion quality over Forced
Alignment, demonstrating its ability to preserve naturalness and
reduce artifacts, thus validating the rationale behind our dataset
construction strategy.

Visualizations. We provide a visualization showing several
frames of the interaction generated by our method in Fig.6. The
person lifts the bowl, drinks and puts it back on the desk without
collision and correctly uses both hands.

6 Conclusions
In this paper, we introduce a novel task of text-controlled human-
object interaction generation in 3D scenes with movable objects,
and build the InteractMove dataset to support it. Our proposed
pipeline, integrating 3D visual grounding, joint affordance learning,
and collision-aware motion generation, effectively handles object
identification, diverse interaction prediction, and generation of
physically realistic motion. Experiments show that our method
outperforms existing approaches in generating physically plausible
and text-compliant interactions.
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